SPARC Stratosphere-troposphere Processes And their Role in Climate
WCRP | World Climate Research Program
Activity description
- Figure: Schematic overview of the structure of SSiRC.
The stratospheric aerosol layer is a key component in the climate system. It affects the radiative balance of the atmosphere directly through interactions with solar and terrestrial radiation, and indirectly through its effect on stratospheric ozone. Because the stratospheric aerosol layer is prescribed in many climate models as well as Chemistry-Climate Models (CCMs), model simulations of future atmospheric conditions and climate generally do not account for the interaction between the aerosol-sulfur cycle and resultant impacts on the climate system. Present understanding of how the stratospheric aerosol layer may be affected by future climate change and how the stratospheric aerosol layer may drive climate change is, therefore, very limited.
The purposes of SSiRC (Stratospheric Sulfur and its Role in Climate) include: (1) providing a coordinated structure for the various individual activities already underway in different research centres; (2) encouraging and supporting new instrumentation and measurements of sulfur-containing compounds, such as COS, DMS, and non-volcanic SO2 in the UTLS globally; and (3) initiating new model/data intercomparisons. SSiRC is expected to feed into the GeoMIP activity as it deals with more fundamental questions relating to sulfur and aerosols in the stratosphere.
Meetings
18-23 March 2018
AGU Chapman Conference on Stratospheric Aerosol in the Post-Pinatubo Era: Processes, Interactions, and Importance
Puerto de la Cruz, Tenerife, Canary Islands, Spain
25-28 April 2016
Stratospheric Sulfur and its Role in Climate
Potsdam, Germany
Further Information can be found at www.sparc-ssirc.org
27 April 1 May 2015
SSiRC SSG Meeting
Bern, Switzerland
22-26 September 2014
SSiRC SSG Meeting
Bern, Switzerland
28-30 October 2013
Stratospheric Sulfur and its Role in Climate
Atlanta, Georgia, USA
workshop circular, poster, webpage: http://ssirc.gatech.edu, presentations are available at www.sparc-ssirc.org.
31 October-02 November 2012
SSiRC team meeting
Bern, Switzerland
Published results
Journal publications:
Andersson, S. M., Martinsson, B. G., Vernier, J.-P., Friberg, J., Brenninkmeijer, C. A. M., Hermann, M., van Velthoven, P. F. J., Zahn, A., 2015: Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun., 6: 7692, doi: 10.1038/ncomms8692, 2015.
Andersson S.M., B.G. Martinsson, J. Friberg, C.A.M. Brenninkmeijer, A. Rauthe-Schöch, M. Hermann, P.J.F. van Velthoven and A. Zahn, 2013: Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008 – 2010 based on CARIBIC observations. Atmos. Chem. Phys., 13, 1781-1796, doi:10.5194/acp-13-1781-2013.
Arfeuille, F., B. P. Luo, P. Heckendorn, D. Weisenstein, J. X. Sheng, E. Rozanov, M. Schraner, S. Bronnimann, L. W. Thomason, and T. Peter, 2013: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmos. Chem. Phys., 13, 11221-11234, doi:10.5194/acp-13-11221-2013.
Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D., & D. W. Waugh, 2014: Modifications of the quasi‐biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Let., 41, doi:10.1002/(ISSN)1944-8007.
Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R., & P. A. Newman, 2013: The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. Journal of Atmospheric Science, 70(3), 894–900. doi:10.1175/JAS-D-12-0143.1.
Aydin, M., J. E. Campbell, T. J. Fudge, K. M. Cuffey, M. R. Nicewonger, K. R. Verhulst, and E. S. Saltzman, 2016: Changes in atmospheric carbonyl sulfide over the last 54,000years inferred from measurements in Antarctic ice cores. J. Geophys. Res. Atmos., 121(4), 1943-1954, DOI: 10.1002/2015JD024235.
Bândă, N., M. Krol, M. van Weele, T. van Noije, P. Le Sager, and T. Röckmann, 2016: Can we explain the observed methane variability after the Mount Pinatubo eruption? Atmos. Chem. Phys., 16(1), 195-214, doi:10.5194/acp-16-195-2016.
Bândă, N., M. Krol, T. van Noije, M. van Weele, J. E. Williams, P. Le Sager, U. Niemeier, L. Thomason, and T. Röckmann, 2015: The effect of stratospheric sulfur from Mount Pinatubo on tropospheric oxidizing capacity and methane. J. Geophys. Res., 120, 1202-1220, doi:10.1002/2014JD022137.
Belviso, S., I. M. Reiter, B. Loubet, V. Gros, J. Lathiere, D. Montagne, M. Delmotte, M. Ramonet, C. Kalogridis, B. Lebegue, N. Bonnaire, V. Kazan, T. Gauquelin, C. Fernandez, and B. Genty, 2016: A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest ecosystem in southern France. Atmos. Chem. Phys., 16(23), 14909-14923.
Berdahl, M., and A. Robock, 2013: Northern Hemispheric cryosphere response to volcanic eruptions in the Paleoclimate Model Intercomparison Project 3 last millennium simulations. J. Geophys. Res., 118, 12359-12370, doi:10.1002/2013JD019914.
Berkelhammer, M., H. C. Steen-Larsen, A. Cosgrove, A. J. Peters, R. Johnson, M. Hayden, and S. A. Montzka, 2016: Radiation and atmospheric circulation controls on carbonyl sulfide concentrations in the marine boundary layer. J. Geophys. Res.-Atmos., 121(21), 13113-13128.
Berthet, G., et al., 2017: Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations. Atmos. Chem. Phys., 17(3), 2229-2253, doi:10.5194/acp-17-2229-2017.
Brühl, C., J. Lelieveld, H. Tost, M. Höpfner, and N. Glatthor, 2015: Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res., 120, 2103–2118, doi:10.1002/2014JD022430.
Campbell, J. E., M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry, and T. W. Hilton, 2015: Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints. Geophys. Res. Lett., 42, 3004-3010, doi:10.1002/2015GL063445.
Campbell, P., M. Mills, and T. Deshler, 2014: The global extent of the mid stratospheric CN layer: A three-dimensional modeling study. J. Geophys. Res., 119, doi:10.1002/2013JD020503.
Campbell, P., and T. Deshler, 2014: Condensation nuclei measurements in the midlatitude (1982–2012) and Antarctic (1986–2010) stratosphere between 20 and 35 km. J. Geophys. Res., 119, doi:10.1002/2013JD019710.
Canty, T., N. R. Mascioli, M. D. Smarte, and R. J. Salawitch, 2013: An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling. Atmos. Chem. Phys., 13, 3997-4031, 2013, www.atmos-chem-phys.net/13/3997/2013/, doi:10.5194/acp-13-3997-2013.
Carboni, E., R. G. Grainger, T. A. Mather, D. M. Pyle, G. E. Thomas, R. Siddans, A. J. A. Smith, A. Dudhia, M. E. Koukouli, and D. Balis, 2016: The vertical distribution of volcanic SO2 plumes measured by IASI. Atmos. Chem. Phys., 16(7), 4343-4367.
Carn, S. A., L. Clarisse, and A. J. Prata, 2016: Multi-decadal satellite measurements of global volcanic degassing. J. Volc. Geoth. Res., 311, 99-134.
Carn, S. A., V. E. Fioletov, C. A. McLinden, C. Li, and N. A. Krotkov, 2017: A decade of global volcanic SO2 emissions measured from space. Sci. Rep., 7, 44095, doi:10.1038/srep44095.
Chane Ming, F., D. Vignelles, F. Jegou, G. Berthet, J.-B. Renard, F. Gheusi, and Y. Kuleshov, 2016: Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Atmos. Chem. Phys., 16(12), 8023-8042.
Cook, T., 2016: A decade of progress in stratospheric aerosol research. Eos, 97, doi:10.1029/2016EO050721.
Damadeo, R. P., J. M. Zawodny, and L. W. Thomason, 2014: Reevaluation of stratospheric ozone trends from SAGE II data using a simultaneous temporal and spatial analysis. Atmos. Chem. Phys., 14(24), 13455-13470.
Damadeo, R. P., J. M. Zawodny, L. W. Thomason, and N. Iyer, 2013: SAGE Version 7.0 Algorithm: Application to SAGE II. Atmos. Meas. Tech., 6, 3539-3561, doi:10.5194/amt-6-3539-2013.
Dhomse, S S, K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, R. Hommel, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. O’Connor, O. Morgenstern, J. A. Pyle, T. Deshler, J. M. Zawodny, and L. W. Thomason, 2014: Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model. Atmos. Chem. Phys., 14, 11221–11246.
Du, Q. Q., C. Zhang, Y. Mu, Y. Cheng, Y. Zhang, C. Liu, M. Song, D. Tian, P. Liu, J. Liu, C. Xue, and C. Ye, 2016: An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion. Geophys. Res. Lett., 43(16), 8720-8727.
English, J. M., O. B. Toon, and M. J. Mills, 2013: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res., 118, 1880–1895, doi:10.1002/jgrd.50196.
Ferraro, A. J., and H. G. Griffiths, 2016: Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Env. Res. Lett., 11(3), 034012.
Fioletov, V. E., C. A. McLinden, N. Krotkov, C. Li, J. Joiner, N. Theys, S. Carn, and M. D. Moran, 2016: A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. Atmos. Chem. Phys., 16(18), 11497-11519.
Friberg J., B. G. Martinsson, S. M. Andersson, C. A. M. Brenninkmeijer, M. Hermann, P. F. J. van Velthoven and A. Zahn, 2014: Sources of increase in LMS sulfurous and carbonaceous aerosol background concentrations during 1999 – 2008 derived from CARIBIC flights. Tellus, 66, 23428, doi:10.3402/tellusb.v66.23428.
Friberg J., B.G. Martinsson, M.K. Sporre, S.M. Andersson, C.A.M. Brenninkmeijer, M. Hermann, P.F.J. van Velthoven, and A. Zahn, 2015: Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds. Earth and Space Science, 2, doi: 10.1002/2015EA000110, 2015.
Fromm, M., G. Kablick, G. Nedoluha, E. Carboni, R. Grainger, J. Campbell, and J. Lewis, 2014: Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak. J. Geophys. Res., 119(17), 10,343-310, 364.
Garny, H. and W. J. Randel, 2013: Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions. J. Geophys. Res., 118, 13,421–13,433, doi:10.1002/2013JD020908.
Glatthor, N., et al., 2017: Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012. Atmos. Chem. Phys., 17(4), 2631-2652, doi:10.5194/acp-17-2631-2017.
Griessbach, S., L. Hoffmann, R. Spang, M. von Hobe, R. Müller, and M. Riese, 2016: Infrared limb emission measurements of aerosol in the troposphere and stratosphere. Atmos. Meas. Tech., 9(9), 4399-4423.
Gu, Y. X., H. Liao, and J. C. Bian, 2016: Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region. Atmos. Chem. Phys., 16(11), 6641-6663.
Guillet, S., et al., 2017: Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci., 10(2), 123-128, doi:10.1038/ngeo2875.
Haywood, J. M., Jones, A. and G. S. Jones, 2013: The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15(2), 92-96, doi:10.1002/asl2.471.
Heng, Y., L. Hoffmann, S. Griessbach, T. Rößler, and O. Stein, 2016: Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations. Geosci. Model Dev., 9(4), 1627-1645.
Hervig, M. E., C. G. Bardeen, D. E. Siskind, M. J. Mills, and R. Stockwell, 2017: Meteoric smoke and H2SO4 aerosols in the upper stratosphere and mesosphere. Geophys. Res. Lett., 44(2), 1150-1157, DOI: 10.1002/2016GL072049.
Hoffmann, L., T. Rößler, S. Griessbach, Y. Heng, and O. Stein, 2016: Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products. J. Geophys. Res.-Atmos., 121(9), 4651-4673.
Höpfner, M., N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, and C. D. Boone, 2013: Sulfur dioxide (SO2) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15-45 km altitude. Atmos. Chem. Phys., 13, 10405-10423, doi:10.5194/acp-13-10405-2013.
Höpfner, M., C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller, 2015: Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002–2012. Atmos. Chem. Phys., 15, 7017-7037, doi:10.5194/acp-15-7017-2015.
Iacovino, K., K. Ju-Song, T. Sisson, J. Lowenstern, R. Kuk-Hun, J. Jong-Nam, S. Kun-Ho, H. Song-Hwan, C. Oppenheimer, J. O. S. Hammond, A. Donovan, K. W. Liu, and R. Kum-Ran, 2016: Quantifying gas emissions from the “Millennium Eruption” of Paektu volcano, Democratic People’s Republic of Korea/China. Sci. Adv., 2(11), DOI: 10.1126/sciadv.1600913
Irvine, P. J., B. Kravitz, M. G. Lawrence, and H. Muri, 2016: An overview of the Earth system science of solar geoengineering. Wires Clim. Change, 7(6), 815-833.
Irvine, P. J., et al., 2017: Towards a comprehensive climate impacts assessment of solar geoengineering. Earth’s Future, 5(1), 93-106, DOI: 10.1002/2016EF000389.
Ivy, D. J., S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt, and R. R. Neely, 2017: The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophys. Res. Lett., 44, DOI: 10.1002/2016GL071925.
Jégou F., G. Berthet, C. Brogniez, J.-B. Renard, P. François, J.M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J.-Y. Balois, C. Verwaerde, and D. Daugeron, 2013: Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer. Atmos. Chem. Phys., 13, 6533-6552, doi:10.5194/acp-13-6533-2013.
Jones, A. C., J. M. Haywood, A. Jones, and V. Aquila, 2016: Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study. J. Geophys. Res.-Atmos., 121(12), 6892-6908.
Jones, A. C., J. M. Haywood, and A. Jones, 2016: Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmos. Chem. Phys., 16(5), 2843-2862.
Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J. N. S. Cole, and B. Kravitz, 2017: Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario. Atmos. Chem. Phys., 17(5), 3339-3356, doi:10.5194/acp-17-3339-2017.
Khaykin, S. M., et al., 2017: Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations. Atmos. Chem. Phys., 17(3), 1829-1845, doi:10.5194/acp-17-1829-2017.
Kleinschmitt, C., O. Boucher, S. Bekki, F. Lott, and U. Platt, under review: LMDz-S3A-v1: A sectional stratospheric sulphate aerosol in the LMDz atmospheric general circulation model. Geosci. Model Dev., doi:10.5194/gmd-2017-31
Kooijmans, L. M. J., N. A. M. Uitslag, M. S. Zahniser, D. D. Nelson, S. A. Montzka, and H. L. Chen, 2016: Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS). Atmos. Meas. Tech., 9(11), 5293-5314.
Kovilakam, M., and T. Deshler, 2015: On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements. J. Geophys. Res., 120, 8426–8447, doi:10.1002/2015JD023303.
Kravitz, B., A. Robock, S. Tilmes, O. Boucher, J.M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe, 2015: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation Design and Preliminary Results. Geosci. Model Dev., 8, 3379-3392, doi:10.5194/gmd-8-3379-2015.
Kremser, S., et al., 2016: Stratospheric aerosol – Observations, processes, and impact on climate. Rev. Geophys., 54(2), doi:10.1002/2015rg000511.
Krysztofiak, G., Y. Té, V. Catoire, F. Jégou, and G. Berthet, 2014: Carbonyl sulfide variability with latitude in the atmosphere. Atmosphere-Ocean, 53, 1-13, QOS 2012 special issue, doi: 10.1080/07055900.2013.876609.
Lee, C. L., and P. Brimblecombe, 2016: Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes. Earth Sci. Rev., 160, 1-18, https://doi.org/10.1016/j.earscirev.2016.06.005
Lejeune, B., E. Mahieu, M. K. Vollmer, S. Reimann, P. F. Bernath, C. D. Boone, K. A. Walker, and C. Servais, 2017: Optimized approach to retrieve information on atmospheric, carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995. J. Quant. Spectrosc. Radiat. Transf., 186, 81-95, http://dx.doi.org/10.1016/j.jqsrt.2016.06.001.
Lennartz, S. T., C. A. Marandino, M. von Hobe, P. Cortes, B. Quack, R. Simo, D. Booge, A. Pozzer, T. Steinhoff, D. L. Arevalo-Martinez, C. Kloss, A. Bracher, R. Röttgers, E. Atlas, and K. Krüger, 2017: Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmos. Chem. Phys., 17, 385-402, doi:10.5194/acp-17-385-2017.
MacMartin, D. G., and B. Kravitz, 2016: Dynamic climate emulators for solar geoengineering. Atmos. Chem. Phys., 16(24), 15789-15799.
MacMartin, D. G., B. Kravitz, J. C. S. Long, and P. J. Rasch, 2016: Geoengineering with stratospheric aerosols: What do we not know after a decade of research? Earths Future, 4(11), 543-548.
Mallik, C., N. Chandra, S. Venkataramani, and S. Lal, 2016: Variability of atmospheric carbonyl sulfide at a semi-arid urban site in western India. Sci. Total Environ., 551-552, 725-737.
Martinsson B. G., J. Friberg, S. M. Andersson, A. Weigelt, M. Hermann, D. Assmann, J. Voigtländer, C. A. M. Brenninkmeijer, P. F. J. van Velthoven and A. Zahn, 2014: Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements. Atmos. Meas. Tech., 7, 2581-2596, doi:10.5194/amt-7-2581-2014.
Mateshvili, N., Fussen, D., Mateshvili, G., Mateshvili, I., Vanhellemont, F., Kyrölä, E., Tukiainen, S., Kujanpää, J., Bingen, C., Robert, C., Tétard, C., and E. Dekemper, 2013: Nabro volcano aerosol in the stratosphere over Georgia, South Caucasus from ground-based spectrometry of twilight sky brightness. Atmos. Meas. Tech., 6, 2563-2576, doi:10.5194/amt-6-2563-2013.
McLinden, C. A., V. Fioletov, M. W. Shephard, N. Krotkov, C. Li, R. V. Martin, M. D. Moran, and J. Joiner, 2016: Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci., 9(7), 496-500, doi:10.1038/ngeo2724.
McLinden, C. A., V. Fioletov, N. A. Krotkov, C. Li, K. F. Boersma, and C. Adams, 2016: A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space. Environ. Sci. Technol., 50(1), 331-337.
Mills, M. J., A. Schmidt, R. Easter, S. Solomon, D. E. Kinnison, S. J. Ghan, R. R. Neely III, D. R. Marsh, A. Conley, C. G. Bardeen, A. and Gettelman, 2016: Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM). J. Geophys. Res. – Atmos., 121(5), 2332-2348.
Münch, S., and J. Curtius, 2016: Derivation of Antarctic stratospheric sulfuric acid profiles and nucleation modeling of the polar stratospheric CN layer. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-583.
Murphy, D. M., K. D. Froyd, J. P. Schwarz, and J. C. Wilson, 2014: Observations of the chemical composition of stratospheric aerosol particles. Q.J.R. Meteorol. Soc., 140, 1269–1278, doi:10.1002/qj.2213.
Neely R. R. III., O. B. Toon, S. Solomon, J.-P. Vernier, C. Alvarez, J. M., English, K. H. Rosenlof, M. J. Mills, C. G. Bardeen, J. S. Daniel, and J. P. Thayer, 2013: Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett., 40, 999–1004, doi:10.1002/grl.50263.
Neely, R. R., III, P. Yu, K. H. Rosenlof, O. B. Toon, J. S. Daniel, S. Solomon, and H. L. Miller, 2014: The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer. J. Geophys. Res., 119, 1571-1579, doi:10.1002/2013JD020578.
Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle, 2016: Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys., 16(6), 4191-4203, doi:10.5194/acp-16-4191-2016.
Ogee, J., J. Sauze, J. Kesselmeier, B. Genty, H. Van Diest, T. Launois, and L. Wingate, 2016: A new mechanistic framework to predict OCS fluxes from soils. Biogeosci., 13(8), 2221-2240.
Oppenheimer, C., et al., 2017: Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Qua. Sc. Rev., 158, 164-171, dx.doi.org/10.1016/j.quascirev.2016.12.024.
Pitari, G., D. Visioni, E. Mancini, I. Cionni, G. Di Genova, and I. Gandolfi, 2016: Sulfate aerosols from non-explosive volcanoes: Chemical-radiative effects in the troposphere and lower stratosphere. Atmos., 7(7), 85, doi:10.3390/atmos7070085.
Pitari, G., G. Di Genova, E. Mancini, D. Visioni, I. Gandolfi, and I. Cionni, 2016: Stratospheric aerosols from major volcanic eruptions: A composition-climate model study of the aerosol cloud dispersal and e-folding time. Atmos., 7(6), 75, doi:10.3390/atmos7060075.
Pitari, G., I. Cionni, G. Di Genova, D. Visioni, I. Gandolfi, and E. Mancini, 2016: Impact of stratospheric volcanic aerosols on age-of-air and transport of long-lived species. Atmos., 7(11), 149, doi:10.3390/atmos7110149.
Popp, T., G. de Leeuw , C. Bingen, C. Brühl, V. Capelle, A. Chedin, L. Clarisse, O. Dubovik, R. Grainger, J. Griesfeller, A. Heckel, S. Kinne, L. Klüser, M. Kosmale, P. Kolmonen, L. Lelli, P. Litvinov, L. Mei, P. North, S. Pinnock, A. Povey, C. Robert, M. Schulz, L. Sogacheva, K. Stebel, D. Stein Zweers, G. Thomas, L. G. Tilstra, S. Vandenbussche, P. Veefkind, M. Vountas, and Y. Xue, 2016: Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sens., 8(5), 421, doi:10.3390/rs8050421.
Predybaylo, E., G. L. Stenchikov, A. T. Wittenberg, and F. Zeng, 2017: Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res. Atmos., 122(2), 925-947, DOI: 10.1002/2016JD025796.
Pumphrey, H. C., Read, W. G., Livesey, N. J., and Yang, K., 2015: Observations of volcanic SO2 from MLS on Aura. Atmos. Meas. Tech., 8, 195-209, doi:10.5194/amt-8-195-2015.
Raible, C. C., S. Brönnimann, R. Auchmann, P. Brohan, T. L. Frölicher, H.-F. Graf, P. Jones, J. Luterbacher, s. Muthers, R. Neukom, A. Robock, S. Self, A. Sudrajat, C. Timmreck, and M. Wegmann, 2016: Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wires Clim. Change, 7(4), 569-589, doi:10.1002/wcc.407.
Renard, J. B., F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou,T. Tonnelier, M. Jeannot, B. Couté, R. Akiki, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, C. Crenn, J. Sciare, P. Zieger, M. Salter, T. Roberts, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, and d. Daugeron, 2016: LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation. Atmos. Meas. Tech., 9(4), 1721-1742.
Ridley, D. A., S. Solomon, J. E. Barnes, V. D. Burlakov, T. Deshler, S. I. Dolgii, A. B. Herber, T. Nagai, R. R. Neely III, A. V. Nevzorov, C. Ritter, T. Sakai, B. D. Santer, M. Sato, A. Schmidt, O. Uchino, and J. P. Vernier, 2014: Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett., 41, doi:10.1002/2014GL061541.
Robock, A., https://eos.org/editors-vox/blowin-in-the-wind-observing-stratospheric-aerosols
Sellitto, P., 2017: Chapter 9 – Artificial Neural Networks for Spectral Sensitivity Analysis to Optimize Inversion Algorithms for Satellite-Based Earth Observation: Sulfate Aerosol Observations With High-Resolution Thermal Infrared Sounders A2. In: Sensitivity Analysis in Earth Observation Modelling, edited by P. K. Srivastava and G. Petropoulos, pp. 161-175, Elsevier.
Sellitto, P., C. Zanetel, A. di Sarra, G. Salerno, A. Tapparo, D. Meloni, G. Pace, T. Caltabiano, P. Briole, and B. Legras, 2017: The impact of Mount Etna sulfur emissions on the atmospheric composition and aerosol properties in the central Mediterranean: A statistical analysis over the period 2000-2013 based on observations and Lagrangian modelling. Atmos. Environ., 148, 77-88, http://dx.doi.org/10.1016/j.atmosenv.2016.10.032.
Sellitto, P., G. Salerno, and P. Briole, 2017: The EtnaPlumeLab (EPL) research cluster : advance the understanding of Mt. Etna plume, from source characterisation to downwind impact. Ann. Geophys., 60, DOI: dx.doi.org/10.4401/ag-7106.
Sellitto, P., G. Sèze, and B. Legras, 2016: Secondary sulphate aerosols and cirrus clouds detection with seviri during Nabro volcano eruption. Geophys. Res. Abstr., 18, EGU2016-16776-1.
Sheng, J.-X., D. K. Weisenstein, B. Luo, E. Rozanov, A. Stenke, J. Anet, H. Bingemer, and T. Peter, 2015: Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation. J. Geophys. Res., 120, 256-276, doi:10.1002/2014JD021985.
Thomason, L. W. and J.-P. Vernier, 2013: Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005. Atmos. Chem. Phys., 13, 4605–4616.
Tilmes, S., Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B., Lamarque, J.-F., Pitari, G., and J.M. English, 2014: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models. Geosci. Model Dev., 8, 43-49, doi:10.5194/gmd-8-43-2015.
Timmreck, C., G. W. Mann, V. Aquila, C. Brühl, S. Carn, M. Chin, S. S. Dhomse, T. Diehl, J. M. English, R. Hommel, L. A. Lee, M. J. Mills, R. Neely, J.-X. Sheng, M. Toohey and D. Weisenstein, 2016: ISA-MIP: A co-ordinated intercomparison of Interactive Stratospheric Aerosol models: Motivation, experiments and specifications to be submitted to GMD. EGU2016-13766, Vienna, EGU General Assembly 2016.
Vernier J.-P., Farlie T.D., Natarajan M., Weinhold F.G., Bian J., Martinsson B.G., Crumeyrolle S., Thomason L.W. and K. Bedka, 2015: Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian Pollution. J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD022372.
von Savigny, C., F. Ernst, A. Rozanov, R. Hommel, K.-U. Eichmann, V. Rozanov, J. P. Burrows, and L. W. Thomason, 2015: Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results. Atmos. Meas. Tech., 8, 5223–5235.
Woiwode, W., J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal, 2014: Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics. Atmos. Chem. Phys., 14, 11525-11544.
Yang, Q., C. M. Bitz, and S. J. Doherty, 2014: Offsetting effects of aerosols on Arctic and global climate in the late 20th century. Atmos. Chem. Phys., 14, 3969-3975, doi:10.5194/acp-14-3969-2014.
Yu P., O.B. Toon, R.R. Neely, B.G. Martinsson and C.A.M. Brenninkmeijer, 2015: Composition and physical properties of the aerosols in the Asian tropopause aerosol layer and in the North American tropopause aerosol layer. Geophys. Res. Lett., 42, doi: 10.1002/2015GL063181.
Zanchettin D., C. Timmreck, O. Bothe , S. Lorenz, G. Hegerl, H.-F Graf, J. Luterbacher and J. Jungclaus, 2013: Delayed winter warming: a decadal dynamical response to strong tropical volcanic eruptions. Geophys. Res. Lett., doi: 10.1029/2012GL054403.
Zanchettin D., O. Bothe, H.-F Graf, S. Lorenz, J. Luterbacher, C. Timmreck and J. Jungclaus, 2013: Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res., doi: 10.1002/jgrd.50229.
Zanchettin, D., M. Khodri, C. Timmreck M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock, F. S. Pausata, W. T. Ball, S. E. Bauer S. Bekki, S. S. Dhomse, A. N. LeGrande, G. W. Mann, L. Marshall, M. Mills, M. Marchand, U. Niemeier, V. Poulain, A. Rubino, A. Stenke, K. Tsigaridis and F. Tummon (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701--2719, doi:10.5194/gmd--9--2701--2016.
Zhu, Y., O. B. Toon, A. Lambert, D. E. Kinnison, M. Brakebusch, C. G. Bardeen, M. J. Mills, and J. M. English, 2015: Development of a Polar Stratospheric Cloud Model within the Community Earth System Model using constraints on Type I PSCs from the 2010–2011 Arctic winter. J. Adv. Model. Earth Syst., 7, 551–585, doi:10.1002/2015MS000427.
SPARC activity updates:
SPARC Newsletter No. 47, 2016, p. 31: The 2nd Workshop on Stratospheric Sulfur and its Role in Climate, by S. Kremser and L. Thomason
SPARC Newsletter No. 43, 2014, p. 25: Report on the 1st Stratospheric Sulfur and its Role in Climate Workshop, by L. Thomason, S. Kremser, M. Rex, C. Timmreck, and J.-P. Vernier
SPARC Newsletter No. 39, 2012, p. 37: Stratospheric Sulphur and its Role in Climate (SSiRC), by M. Rex, C. Timmreck, S. Kremser, L. Thomason, J.-P. Vernier
SPARC, 2006: SPARC Assessment of Stratospheric Aerosol Properties (ASAP). L. Thomason and Th. Peter (Eds.), SPARC Report No. 4, WCRP-124, WMO/TD – No. 1295, available at www.sparc-climate.org/publications/sparc-reports/